
Towards the Co-evolution of Models, Code, and

Assurance Cases:

The CAID Framework

Patrik Meijer, Nag Mahadevan, Mark Wutka, Gabor Karsai

Institute for Software-Integrated Systems

Vanderbilt University

Supported by DARPA Assured Autonomy Program

Outline

2

 The challenge:
 High-assurance System Software and CI/CD

 Paradigm for assured software
 Artifacts: models + implementation + assurance arguments

 Challenges of CI/CD
 Continuous evolution → Continuous assurance

 Dynamic maintenance of assurance arguments

 CAID: Next-gen development – CI/CA/CD
 Integration/coordination across tools

 Example scenario

 Results
 Assurance argument construction, editing, and review

 Integrating development tools – with dependency tracking

 Conclusions

The challenge

3

 High-assurance Software Systems

 Safety-/mission-critical systems

where consequences of failures are

catastrophic

 Examples

 Advanced Driver Assistance Systems

(ADAS)

 Cockpit automation systems

 Power grid / protection systems

 Healthcare CPS

 On the other hand…

 Continuous Integration / Continuous

Delivery

 Agile development

System safety engineering today

4

 Often post-development

 Independent safety review

 Often mandated by government regulations

 Challenge: Software as a ‘system integrator’

Goal Structuring Notation :

A graphical tool to represent a logical argument

4+1 types of nodes:

Goal: What we want to prove (‘safety claim’)

Assumption/Context: Under what circumstances

Strategy: How we go about proving the goal

Solution: Evidence to support a goal

Sub-goals: decomposition of a higher level goal

Source: http://www.goalstructuringnotation.info/

Assurance argument –

‘Documentation’ for HASS?

http://www.goalstructuringnotation.info/

Engineering Artifacts needed for Assurance

5

Artifact Role

Model artifacts

Requirements Expectations: functions, performance, behavior, …

Specifications Precise formulation of requirements

Design models Representation of design decisions on architecture, functions, interfaces, …

Implementation artifacts

Code ‘Production code’ … maybe generated

Tests Unit/system-level tests to show lack of flaws

Tooling Tools and their ‘settings’ used to build the system

Documentation Code-level and end-user documentation

Assurance artifacts

Assurance arguments Claims and logical (possibly informal) arguments for their validity

Evidence

Proofs Formal logical arguments / models checked

Test results Reproducible records of test runs

Documents Other evidence sources (e.g. datasheets, etc.)

Observations

6

1. The artifacts are produced (and
maintained) in a continuous
development process

 Version controlled, continuous
development and integration

2. The artifacts are in complex
dependency relationships

 Explicit representation and
management of these dependencies is
inevitable

Example: Add a new ‘mission type’ for an

Autonomous Underwater Vehicle (AUV)

7

 Task: Underwater infrastructure (pipeline) inspection

 Requirements:

 Descend close to sea floor

 Find the infrastructure (cable, pipe, etc.) object

 Inspect object, up to a distance, limited by battery
charge

 Monitor battery charge and control surfaces for
degradation

 Safely return home, under all scenarios

 Steps:

 Add new sensor: Side-Scan Sonar

 Spec: performance, safety, ... goals

 Change software architecture

 Integrate new sensor

 Update autonomy logic

 Devise new tests/verification regimes

 Revise ‘safety assurance arguments’

 Integrate all these into the CI/CD

Vision:
Continuous Assurance-Integrated Development

8

 Tools:

 Modeling tools for capturing requirements,

formalizing specifications, and representing

designs in high-level models

 Development tools for code and test

construction (generation), static/dynamic

code analysis, model and code verification,

documentation production

 Assurance tools for constructing, reviewing,

and archiving assurance evidence data sets

Notional use case:

Autonomous Underwater Vehicle (AUV)

9

 Requirements:
 Descend close to sea floor

 Find the infrastructure (cable, pipe, etc.)

 Inspect object, up to a distance, limited by battery charge

 Monitor battery charge and control surfaces for degradation

 Safely return home, under all scenarios

 Software functions for the ‘Safe return’:
 Monitor battery health and compute remaining useful charge

 Continuously estimate/plan safe return trajectory

 Control vehicle movement and switch to ‘return-to-home’ mode, if

needed

 Elements of an assurance argument for the ‘Safe return’ use case:
 (1) correct estimation of remaining useful charge in the battery,

 (2) correct calculation of the safe return trajectory,

 (3) correct reaction of the vehicle controller to critical battery

charge levels under all foreseeable modes of operation, and

 (4) the correct integration of the above

Tool use case: Traceability
Requirement → System function → Software model → Software component →Test case →Test result
(evidence) → Supported assurance claim
• Tracking the impact of a change (forward propagation)
• Dependency analysis (backward propagation)
• History of changes (append-only log of versions/changes)

Implementation:

Assurance Case Construction Tool

10

Implementation:

Assurance Case Construction Tool

11

 The central canvas showcases a tree-graph, typically a single-rooted tree with a top-level goal, like

the BLUEROV in this example (1).

 Users can navigate through the tree using the expand/collapse buttons (2). The blue outline around a

node indicates its selection, and its properties (3) and relationships (4) become editable in the right-

hand panel. The action buttons in (3) let the user filter the model to display only a graph's subtree

and quickly locate the line in the textual document where the node is defined.

 Any edits made in the graphical editor are instantly synchronized with the textual model and the

associated .gsn files. The VS Code extension tracks these updates, adding them to an undo stack. This

feature allows users to undo or redo their changes without needing to navigate through the textual

.gsn files (5).

 Each node can be assigned a set of labels that can be referenced from a view (6). The view's core

component is the expression, a logical operation (and, or, not) based on the labels defined in the

model. Essentially, a view acts as a filter, displaying only nodes with labels that satisfy the specified

expression (7). These views are saved with the model and can be reapplied to the main graph.

 The left panel displays a compact overview of the GSN model as a tree browser (8). Users can

navigate this tree similarly to the main canvas, with node selection and editing available through

sections (3) and (4). A search field at the top allows users to see an expanded, filtered view of the

tree browser, displaying only matches and their parent nodes. By default, the search field filters by

name, but other options can be selected.

 To edit the information/details (10), users can bring up a multi-line text editor (note: only the access

point is shown here, not the actual editor).

Implementation: Assurance Provenance

Demonstration architecture

12

Assurance Provenance

Demonstration : Architecture models

13

System model

Simulation architecture model

Vehicle software architecture model

Assurance Provenance

Demonstration: Global dependencies

14

Assurance Provenance

Demonstration: Dependency after a change

15

Assurance Provenance

Demonstration: Dependencies ‘cleaned’

16

Assurance Provenance

Demonstration: Assurance case evidence

17

Implementation:

Tool architecture

18

User-end tool: VS Code IDE

- GSN Extension – A/C editing

- webgme Extension – Model editor

- depi Extension – Dependencies

Server side:

- ‘gitea’ – git repo server

- git monitor

- webgme – model editor server

- gme monitor

- GSN Extension – A/C editing

- gsn monitor

- depi Extension – Dependencies

- Blackboard for editing

- Database backend

Summary

19

 HASS requires complex ‘documentation’

 Models for requirements, specifications, design

 Implementation: code, tests, tools/settings, docs…

 Structured assurance arguments + evidence

 Artifacts are linked via complex dependency relations

 Agile development processes necessitate version control

 Linear/branching versioning + merge,…

 Tooling::

 Assurance case editor

 Dependency tracking database

 Event monitors: git, WebGME, GSN repository, …

 Server: Linux + docker containers

 Client: VS Code + extensions

 Challenges:

 Complexity of relations

 Management with concurrent updates

 Continuous Integration/Assurance/Deployment …

A new paradigm for software development where continuous assurance is an integral part of

the continuous engineering process?
https://github.com/vu-isis/CAID-tools

https://github.com/vu-isis/CAID-tools

